Kite-designs intersecting in pairwise disjoint blocks

نویسندگان

  • Chin-Mei Fu
  • Wen-Chung Huang
چکیده

A kite-design of order n is a decomposition of the complete graph Kn into kites. Such systems exist precisely when n ≡ 0, 1 (mod 8). Two kite systems (X,K1) and (X,K2) are said to intersect in m pairwise disjoint blocks if |K1∩K2| = m and all blocks in K1∩K2 are pairwise disjoint. In this paper we determine all the possible values of m such that there are two kite-designs of order n intersecting in m pairwise disjoint blocks, for all n ≡ 0, 1 (mod 8). Corresponding author E-mail: [email protected] Corresponding author E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steiner Triple Systems Intersecting in Pairwise Disjoint Blocks

Two Steiner triple systems (X,A) and (X,B) are said to intersect in m pairwise disjoint blocks if |A ∩ B| = m and all blocks in A ∩ B are pairwise disjoint. For each v, we completely determine the possible values of m such that there exist two Steiner triple systems of order v intersecting in m pairwise disjoint blocks.

متن کامل

Octagon Quadrangle Systems nesting 4-kite-designs having equi-indices

An octagon quadrangle is the graph consisting of an 8-cycle (x1, ..., x8) with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order v and index λ [OQS] is a pair (X,B), where X is a finite set of v vertices and B is a collection of edge disjoint octagon quadrangles (called blocks) which partition the edge set of λKv defined on X. A 4-kite is the graph ha...

متن کامل

A Ramsey-type Result for Convex Sets

Given a family of n convex compact sets in the plane, one can always choose n of them which are either pairwise disjoint or pairwise intersecting. On the other hand, there exists a family of n segments in the plane such that the maximum size of a subfamily with pairwise disjoint or pairwise intersecting elements in n*"* ^ n-.

متن کامل

A Deza-Frankl Type Theorem for Set Partitions

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called blocks) of [n] whose union is [n]. Let B(n) denote the family of all set partitions of [n]. A family A ⊆ B(n) is said to be m-intersecting if any two of its members have at least m blocks in common. For any set partition P ∈ B(n), let τ(P ) = {x : {x} ∈ P} denote the union of its singletons. Also, let μ(P ) = [...

متن کامل

A series of Siamese twin designs intersecting in a BIBD and a PBD

Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). We describe a construction of a series of Siamese twin designs with Menon parameters (4p, 2p − p, p − p) intersecting in a derived design with parameters (2p − p, p − p, p − p − 1), and a pairwise balanced design PBD(2p − p, {p, p − p}, p − p − 1). When p and 2p − 1 are primes, the derived design and the pairwise balanced design are cyclic. Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ars Comb.

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2010